Copied to
clipboard

G = C2×C32⋊A4order 216 = 23·33

Direct product of C2 and C32⋊A4

direct product, metabelian, soluble, monomial

Aliases: C2×C32⋊A4, C23⋊He3, C627C6, (C3×C6)⋊A4, (C6×A4)⋊C3, (C3×A4)⋊2C6, C6.7(C3×A4), C3.5(C6×A4), C22⋊(C2×He3), (C2×C62)⋊1C3, C322(C2×A4), (C22×C6).5C32, (C2×C6).5(C3×C6), SmallGroup(216,107)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C2×C32⋊A4
C1C22C2×C6C62C32⋊A4 — C2×C32⋊A4
C22C2×C6 — C2×C32⋊A4
C1C6C3×C6

Generators and relations for C2×C32⋊A4
 G = < a,b,c,d,e,f | a2=b3=c3=d2=e2=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bc-1, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Subgroups: 226 in 68 conjugacy classes, 20 normal (14 characteristic)
C1, C2, C2, C3, C3, C22, C22, C6, C6, C23, C32, C32, A4, C2×C6, C2×C6, C3×C6, C3×C6, C2×A4, C22×C6, C22×C6, He3, C3×A4, C62, C62, C2×He3, C6×A4, C2×C62, C32⋊A4, C2×C32⋊A4
Quotients: C1, C2, C3, C6, C32, A4, C3×C6, C2×A4, He3, C3×A4, C2×He3, C6×A4, C32⋊A4, C2×C32⋊A4

Permutation representations of C2×C32⋊A4
On 18 points - transitive group 18T91
Generators in S18
(1 2)(3 4)(5 6)(7 13)(8 14)(9 15)(10 18)(11 16)(12 17)
(7 8 9)(10 11 12)(13 14 15)(16 17 18)
(1 5 3)(2 6 4)(7 8 9)(10 12 11)(13 14 15)(16 18 17)
(7 13)(8 14)(9 15)(10 18)(11 16)(12 17)
(1 2)(3 4)(5 6)(7 13)(8 14)(9 15)
(1 17 7)(2 12 13)(3 18 9)(4 10 15)(5 16 8)(6 11 14)

G:=sub<Sym(18)| (1,2)(3,4)(5,6)(7,13)(8,14)(9,15)(10,18)(11,16)(12,17), (7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,5,3)(2,6,4)(7,8,9)(10,12,11)(13,14,15)(16,18,17), (7,13)(8,14)(9,15)(10,18)(11,16)(12,17), (1,2)(3,4)(5,6)(7,13)(8,14)(9,15), (1,17,7)(2,12,13)(3,18,9)(4,10,15)(5,16,8)(6,11,14)>;

G:=Group( (1,2)(3,4)(5,6)(7,13)(8,14)(9,15)(10,18)(11,16)(12,17), (7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,5,3)(2,6,4)(7,8,9)(10,12,11)(13,14,15)(16,18,17), (7,13)(8,14)(9,15)(10,18)(11,16)(12,17), (1,2)(3,4)(5,6)(7,13)(8,14)(9,15), (1,17,7)(2,12,13)(3,18,9)(4,10,15)(5,16,8)(6,11,14) );

G=PermutationGroup([[(1,2),(3,4),(5,6),(7,13),(8,14),(9,15),(10,18),(11,16),(12,17)], [(7,8,9),(10,11,12),(13,14,15),(16,17,18)], [(1,5,3),(2,6,4),(7,8,9),(10,12,11),(13,14,15),(16,18,17)], [(7,13),(8,14),(9,15),(10,18),(11,16),(12,17)], [(1,2),(3,4),(5,6),(7,13),(8,14),(9,15)], [(1,17,7),(2,12,13),(3,18,9),(4,10,15),(5,16,8),(6,11,14)]])

G:=TransitiveGroup(18,91);

C2×C32⋊A4 is a maximal subgroup of   C625Dic3  C626Dic3  C624C12
C2×C32⋊A4 is a maximal quotient of   C4○D4⋊He3

40 conjugacy classes

class 1 2A2B2C3A3B3C3D3E···3J6A6B6C···6T6U···6Z
order122233333···3666···66···6
size1133113312···12113···312···12

40 irreducible representations

dim11111133333333
type++++
imageC1C2C3C3C6C6A4C2×A4He3C3×A4C2×He3C6×A4C32⋊A4C2×C32⋊A4
kernelC2×C32⋊A4C32⋊A4C6×A4C2×C62C3×A4C62C3×C6C32C23C6C22C3C2C1
# reps11626211222266

Matrix representation of C2×C32⋊A4 in GL3(𝔽7) generated by

600
060
006
,
100
040
002
,
400
040
004
,
600
060
001
,
600
010
006
,
010
001
100
G:=sub<GL(3,GF(7))| [6,0,0,0,6,0,0,0,6],[1,0,0,0,4,0,0,0,2],[4,0,0,0,4,0,0,0,4],[6,0,0,0,6,0,0,0,1],[6,0,0,0,1,0,0,0,6],[0,0,1,1,0,0,0,1,0] >;

C2×C32⋊A4 in GAP, Magma, Sage, TeX

C_2\times C_3^2\rtimes A_4
% in TeX

G:=Group("C2xC3^2:A4");
// GroupNames label

G:=SmallGroup(216,107);
// by ID

G=gap.SmallGroup(216,107);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-2,2,224,1630,2927]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^2=e^2=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c^-1,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
×
𝔽