Copied to
clipboard

G = C2xC32:A4order 216 = 23·33

Direct product of C2 and C32:A4

direct product, metabelian, soluble, monomial

Aliases: C2xC32:A4, C23:He3, C62:7C6, (C3xC6):A4, (C6xA4):C3, (C3xA4):2C6, C6.7(C3xA4), C3.5(C6xA4), C22:(C2xHe3), (C2xC62):1C3, C32:2(C2xA4), (C22xC6).5C32, (C2xC6).5(C3xC6), SmallGroup(216,107)

Series: Derived Chief Lower central Upper central

C1C2xC6 — C2xC32:A4
C1C22C2xC6C62C32:A4 — C2xC32:A4
C22C2xC6 — C2xC32:A4
C1C6C3xC6

Generators and relations for C2xC32:A4
 G = < a,b,c,d,e,f | a2=b3=c3=d2=e2=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, fbf-1=bc-1, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, fef-1=d >

Subgroups: 226 in 68 conjugacy classes, 20 normal (14 characteristic)
C1, C2, C2, C3, C3, C22, C22, C6, C6, C23, C32, C32, A4, C2xC6, C2xC6, C3xC6, C3xC6, C2xA4, C22xC6, C22xC6, He3, C3xA4, C62, C62, C2xHe3, C6xA4, C2xC62, C32:A4, C2xC32:A4
Quotients: C1, C2, C3, C6, C32, A4, C3xC6, C2xA4, He3, C3xA4, C2xHe3, C6xA4, C32:A4, C2xC32:A4

Permutation representations of C2xC32:A4
On 18 points - transitive group 18T91
Generators in S18
(1 2)(3 4)(5 6)(7 13)(8 14)(9 15)(10 18)(11 16)(12 17)
(7 8 9)(10 11 12)(13 14 15)(16 17 18)
(1 5 3)(2 6 4)(7 8 9)(10 12 11)(13 14 15)(16 18 17)
(7 13)(8 14)(9 15)(10 18)(11 16)(12 17)
(1 2)(3 4)(5 6)(7 13)(8 14)(9 15)
(1 17 7)(2 12 13)(3 18 9)(4 10 15)(5 16 8)(6 11 14)

G:=sub<Sym(18)| (1,2)(3,4)(5,6)(7,13)(8,14)(9,15)(10,18)(11,16)(12,17), (7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,5,3)(2,6,4)(7,8,9)(10,12,11)(13,14,15)(16,18,17), (7,13)(8,14)(9,15)(10,18)(11,16)(12,17), (1,2)(3,4)(5,6)(7,13)(8,14)(9,15), (1,17,7)(2,12,13)(3,18,9)(4,10,15)(5,16,8)(6,11,14)>;

G:=Group( (1,2)(3,4)(5,6)(7,13)(8,14)(9,15)(10,18)(11,16)(12,17), (7,8,9)(10,11,12)(13,14,15)(16,17,18), (1,5,3)(2,6,4)(7,8,9)(10,12,11)(13,14,15)(16,18,17), (7,13)(8,14)(9,15)(10,18)(11,16)(12,17), (1,2)(3,4)(5,6)(7,13)(8,14)(9,15), (1,17,7)(2,12,13)(3,18,9)(4,10,15)(5,16,8)(6,11,14) );

G=PermutationGroup([[(1,2),(3,4),(5,6),(7,13),(8,14),(9,15),(10,18),(11,16),(12,17)], [(7,8,9),(10,11,12),(13,14,15),(16,17,18)], [(1,5,3),(2,6,4),(7,8,9),(10,12,11),(13,14,15),(16,18,17)], [(7,13),(8,14),(9,15),(10,18),(11,16),(12,17)], [(1,2),(3,4),(5,6),(7,13),(8,14),(9,15)], [(1,17,7),(2,12,13),(3,18,9),(4,10,15),(5,16,8),(6,11,14)]])

G:=TransitiveGroup(18,91);

C2xC32:A4 is a maximal subgroup of   C62:5Dic3  C62:6Dic3  C62:4C12
C2xC32:A4 is a maximal quotient of   C4oD4:He3

40 conjugacy classes

class 1 2A2B2C3A3B3C3D3E···3J6A6B6C···6T6U···6Z
order122233333···3666···66···6
size1133113312···12113···312···12

40 irreducible representations

dim11111133333333
type++++
imageC1C2C3C3C6C6A4C2xA4He3C3xA4C2xHe3C6xA4C32:A4C2xC32:A4
kernelC2xC32:A4C32:A4C6xA4C2xC62C3xA4C62C3xC6C32C23C6C22C3C2C1
# reps11626211222266

Matrix representation of C2xC32:A4 in GL3(F7) generated by

600
060
006
,
100
040
002
,
400
040
004
,
600
060
001
,
600
010
006
,
010
001
100
G:=sub<GL(3,GF(7))| [6,0,0,0,6,0,0,0,6],[1,0,0,0,4,0,0,0,2],[4,0,0,0,4,0,0,0,4],[6,0,0,0,6,0,0,0,1],[6,0,0,0,1,0,0,0,6],[0,0,1,1,0,0,0,1,0] >;

C2xC32:A4 in GAP, Magma, Sage, TeX

C_2\times C_3^2\rtimes A_4
% in TeX

G:=Group("C2xC3^2:A4");
// GroupNames label

G:=SmallGroup(216,107);
// by ID

G=gap.SmallGroup(216,107);
# by ID

G:=PCGroup([6,-2,-3,-3,-3,-2,2,224,1630,2927]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^3=c^3=d^2=e^2=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b*c^-1,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<